jueves, 16 de abril de 2020

Funciones lineales (rectas)

Función a partir de dos puntos

Si tenemos dos puntos de la recta, podemos calcular la expresión algebraica de la función. Sólo tenemos que sustituir las coordenadas de los puntos en la forma general de la función
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
y resolver el sistema de ecuaciones.

Ejemplo

Vamos a calcular la función lineal que pasa por los puntos (1,2) y (2,7).
Tenemos que hallar la pendiente, m, y la ordenada, n.
Primer punto
Como x=1 e y=2, sustituyendo,
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Segundo punto
Como x=2 e y=7, sustituyendo,
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Tenemos el sistema
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Resolviendo el sistema, por ejemplo, por reducción, tenemos que m=5 (con lo que n=3). Por tanto, se trata de la función
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Intersección de dos funciones

Si tenemos dos funciones lineales, podemos preguntarnos si las rectas que representan se cortan y en qué punto lo hacen.
Para responder esta pregunta, sólo tenemos que igualar las dos expresiones algebraicas y resolver la ecuación.

Ejemplo

Vamos a calcular el punto de corte de las dos siguientes rectas:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Como y=y, igualando,
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Resolvemos la ecuación:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
La primera coordenada del punto de corte es x=4. La segunda coordenada la obtenemos calculando su imagen en alguna de las dos rectas:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Por tanto, el punto de corte es (4,7).
Gráfica:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Paralelas y perpendiculares

Dos rectas son paralelas si no se cortan en ningún punto (o si son iguales). Esto ocurre cuando tienen la misma pendiente, m.
Dos rectas son perpendiculares si se cortan formando un ángulo recto (ángulo de 45°). Las rectas perpendiculares a la recta con pendiente m son las que tienen pendiente 1/m.

Ejemplo

Las siguientes rectas son paralelas porque tienen la misma pendiente (m=2):
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Las siguientes rectas son perpendiculares porque la pendiente de la una es el opuesto del inverso de la pendiente de la otra:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

EJEMPLO:

Problema 1

Las pendientes de tres rectas son m1=1m2=2 y m3=3.
¿Cuál de ellas crece más rápidamente? ¿Cuál de ellas es una recta decreciente?

SOLUCIÓN
R//La recta decreciente es la que tiene la pendiente negativa, m2.
Las otras dos rectas son crecientes y crece más rápido la que tiene pendiente m3.

Problema 2

Hallar, si existe, el punto de corte de las siguientes rectas:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
¿Son rectas paralelas o perpendiculares?

SOLUCIÓN: 
Igualamos las funciones para calcular el punto de corte:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Resolvemos la ecuación:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Calculamos y a partir de x:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
Las rectas se cortan en el punto (4,5).
Como se cortan, no pueden ser paralelas.
Tampoco son perpendiculares porque las pendientes son positivas (es indispensable tener pendientes de signo contrario para ser perpendiculares).
Gráfica:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.




ACTIVIDAD: Resolver los siguientes ejercicios en su cuaderno.

1) Hallar, si existe, el punto de corte de las siguientes rectas:
Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.
¿Son rectas paralelas o perpendiculares?

2) Calcular y representar la función cuya gráfica es una recta que pasa por los puntos (1,2)(1,2) y (−3,4)(−3,4). ¿Cuál es su pendiente?

No hay comentarios.:

Publicar un comentario